GIST and Soft Tissue Sarcomas: Applying Recent Clinical Advances in Systemic Therapy to the Adjuvant and Metastatic Settings

George D. Demetri, M.D.
Associate Director for Clinical Sciences
Dana-Farber/Harvard Cancer Center

Director, Ludwig Center at Harvard
Professor of Medicine, Harvard Medical School
Boston, Massachusetts

gdemetri@dfci.harvard.edu
@DrSarcoma
• Sarcomas are malignancies derived from cells of mesenchymal origin
• Generally quoted incidence: 16,000 new cases per year in the USA
 • 1% of cancers in adults
 • 15% of pediatric cancers

• True incidence is likely somewhat higher

• Gastrointestinal Stromal Tumor (GIST) alone has an estimated incidence of 5,000 to 15,000 new cases per year in the USA
Two Broad Clinical Groups of Sarcomas

Soft Tissue Sarcomas (90%)

Bone Sarcomas (10%)
“Soft Tissue Sarcoma” is not a single disease
Soft Tissue Sarcomas represent a very heterogeneous set of diseases

- GIST: 18%
- Liposarcomas: 15%
- Unclassifiable: 11%
- Leiomyosarcomas: 16%
- Other very rare subtypes: 5%
- Endometrial stromal sarcoma
- Synovial sarcoma
- Myxofibrosarcoma
- Angiosarcoma
- Rhabdomyosarcoma
- Unclassified sarcoma
- Dermatofibrosarcoma
- Kaposi sarcoma
- Soft-Tissue Ewing sarcoma/PNET

Another Way to Classify Soft Tissue Sarcomas [STS] (before 2016)

STS without any FDA-approved Targeted Rx (80%)

STS with FDA-approved Molecular-targeted Rx (20%)
- GIST (18%)
- DFSP (2%)
2017: New Way to Classify Soft Tissue Sarcomas

Soft Tissue Sarcomas with FDA-approved Molecular-targeted Rx (100%)
Overview of recent changes in therapy for Soft Tissue Sarcomas [STS]

• FDA Approvals of SUBTYPE-SPECIFIC therapy
 • GIST
 • Liposarcomas
 • Leiomyosarcomas and Liposarcomas

• FDA Approval of first-line targeted therapy to be given in combination with doxorubicin for any subtype of STS

• New molecularly-defined diagnostic tools to define patient subtypes with increased precision and to identify candidates for promising molecular-targeted therapeutics
Gastrointestinal Stromal Tumor (GIST)

Most common form of soft tissue sarcoma

- Stomach 60%
 - Eso / Duodenum 5%
- Small intestine 30%
 - Colon / rectum 5%

Mutated Receptor Tyrosine Kinases drive 90% of metastatic GISTs

<table>
<thead>
<tr>
<th>Kinase</th>
<th>Percentage</th>
<th>Primary Mutational Hotspots</th>
<th>Resistance Mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIT</td>
<td>80%</td>
<td>Exons 9, 11, 12, 13, 17, 18</td>
<td>Exons 13, 17</td>
</tr>
<tr>
<td>PDGFRα</td>
<td>10%</td>
<td>Extracellular Domain</td>
<td>D842V Exons 18, 12</td>
</tr>
</tbody>
</table>

- Malignant precursors of the GI pacemaker interstitial cells of Cajal
- Primary generally in stomach or small intestine
- Metastases in liver, abdomen, elsewhere
- Completely resistant to cytotoxic chemotherapy

Precision Cancer Medicine for GIST: Gene Mutations Matter

GIST

- **KIT mutation** (80%)
- **PDGFRA mutation** (10% in met, 25% in gastric primary)
- **SDH mutation or deficiency** (either SDHA, SDHB, or SDHC) (approx. 10%)
- **BRAF or NF1 mutations** (<2%)

SPECIFIC MUTATIONS impact patient outcomes

Long Term Survival in Metastatic GIST Patients with Imatinib

From: Correlation of Long-term Results of Imatinib in Advanced Gastrointestinal Stromal Tumors With Next-Generation Sequencing Results - Analysis of Phase 3 SWOG Intergroup Trial S0033

JAMA Oncol. Published online February 09, 2017. doi:10.1001/jamaoncol.2016.6728
Outcomes of metastatic GIST patients vary with type of PDGFRA mutations

Progression-Free Survival

- D842V
- PDGFRA non-D842V

Probability of PFS

$P < 0.0001$

Overall Survival

- D842V
- Non-D842V PDGFRA mutations

Probability of survival

$P < 0.0001$

©2012 by American Association for Cancer Research
Improved Overall Survival with 3 yrs vs. 1 yr of Adjuvant Imatinib in GIST

Hazard ratio 0.45
(95% CI 0.22-0.89)

P = 0.019

Joensuu H, et al

[Graph showing survival rates: 3 Years IM vs 1 Year IM]
Mutation Type Impacts Recurrence-Free Survival with Adjuvant Imatinib

From: Effect of KIT and PDGFRA Mutations on Survival in Patients With Gastrointestinal Stromal Tumors Treated With Adjuvant Imatinib – An Exploratory Analysis of a Randomized Clinical Trial

JAMA Oncol.
Published online March 23, 2017.
NO IMATINIB BENEFIT IN RFS for GIST without KIT or PDGFRA Mutations ("Wild Type" GIST)

% Recurrence-Free and Alive

Time in Months

p=0.6126 at 24 months

Corless et al ASCO 2010
GIST Adjuvant Benefit Correlates with Tumor Genotype

NO IMATINIB BENEFIT IN RFS for GIST with PDGFRA D842V Mutation

% Recurrence-Free and Alive

Time in Months

Imatinib Rx

Imatinib (n=15)

Placebo (n=13)

p=0.9984

Corless et al ASCO 2010
Understanding Resistance to Targeted Therapy in GIST

<table>
<thead>
<tr>
<th>Primary Resistance</th>
<th>Secondary Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1L imatinib</td>
<td>ORR ~60%</td>
</tr>
</tbody>
</table>
New Developments in Overcoming TKI Resistance in GIST

• Several trials of new agents designed to overcome resistance
 • BLU-285
 • DCC-2618
 • PLX-9486
 • Crenolanib

• Combinations galore

• Clinical trial participation is encouraged
Challenges in Managing Metastatic Soft Tissue Sarcomas
Choices of Therapy by Line for Metastatic Soft Tissue Sarcoma Patients

Wagner et al. BMC Cancer (2015) 15:175
DOI 10.1186/s12885-015-1182-4
Does Combination Chemotherapy Improve Outcomes for Metastatic Soft Tissue Sarcomas? (EORTC 62012)

Eligibility:
- High grade STS (2-3)
- Age 18-60
- No previous chemo for advanced/metastatic disease
- WHO PS < 2

Stratification:
- Age (<50 vs ≥50)
- PS (0 vs 1)
- Liver metastases (0 vs +)
- Histological grade (2 vs 3)

Single-agent Doxorubicin
(75 mg/m² bolus or as a 72 hour continous i.v. infusion)

Doxorubicin 25 mg/m² d 1-3
+ Ifosfamide 2.5 g/m² d 1-4
+ PEG-Filgrastim 6 mg s.c. d5

Objective Response Rates

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Doxo (n=228)</th>
<th>Doxo-Ifos (n=227)</th>
<th>Total (n=455)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (%)</td>
<td>n (%)</td>
<td>n (%)</td>
<td></td>
</tr>
<tr>
<td>Complete Response</td>
<td>1 (0.4)</td>
<td>4 (1.8)</td>
<td>5 (1.1)</td>
</tr>
<tr>
<td>Partial Response</td>
<td>30 (13.2)</td>
<td>56 (24.7)</td>
<td>86 (18.9)</td>
</tr>
<tr>
<td>Overall RESPONSE RATE</td>
<td>13.6</td>
<td>26.5</td>
<td>****</td>
</tr>
<tr>
<td>No Change</td>
<td>105 (46.1)</td>
<td>114 (50.2)</td>
<td>219 (48.1)</td>
</tr>
<tr>
<td>Progressive Disease</td>
<td>74 (32.5)</td>
<td>30 (13.2)</td>
<td>104 (22.9)</td>
</tr>
<tr>
<td>Early Death - Progression</td>
<td>4 (1.8)</td>
<td>5 (2.2)</td>
<td>9 (2.0)</td>
</tr>
<tr>
<td>Early Death – Other cause</td>
<td>3 (1.3)</td>
<td>2 (0.9)</td>
<td>5 (1.1)</td>
</tr>
<tr>
<td>Not evaluable</td>
<td>11 (4.8)</td>
<td>16 (7.0)</td>
<td>27 (5.9)</td>
</tr>
</tbody>
</table>

** Significant difference between the two arms: p < 0.001

Progression-Free Survival: Statistically Different ($p=0.003$) Favoring Dox+Ifos

- **Dox**
 - Median PFS: 4.6 months
 - ORR 14%

- **Dox + Ifos**
 - Median PFS: 7.4 months
 - ORR 27%

Overall survival

HR = 0.83 (95.5% CI 0.67 – 1.03)
Stratified logrank test, p = 0.076

No difference statistically

New Approaches to FIRST LINE Therapy of Soft Tissue Sarcomas
Olaratumab – PDGFRA Targeting MoAb

- Fully human monoclonal antibody of immunoglobin G class 1 (IgG1) that selectively binds PDGFRα
- Blocks PDGF binding and PDGF-induced signalling
- Demonstrated activity in both in vitro and in vivo cancer models known to be driven by a PDGF-PDGFRα autocrine loop
- Demonstrated antitumor activity alone or in combination with doxorubicin in human sarcoma xenograft models

Doxorubicin +/- Olaratumab
Open-Label, Multicenter, Phase 1b/2 Trial

Phase 2

- Same entry criteria as Phase 1b
- Stratification:
 - PDGFRα (IHC)
 - Lines of prior treatment
 - ECOG PS
 - Histology (leiomyosarcoma, synovial sarcoma, other STS)

Randomization

- Olaratumab
 15 mg/kg d 1, and 8 + Dox 75 mg/m² d 1 x 8 cycles (21 d)a
- Olaratumab monotherapy until progression
- Olaratumab monotherapy after progression (optional)

Primary endpoint: PFS (predefined statistical significance: 2-sided alpha = 0.2)
Secondary endpoints: OS, ORR, PFS at 3 mo
Biomarker: PDGFRα (IHC) and related ligands

a During cycles 5-8, patients receiving Dox could receive dexrazoxane, at the investigator’s discretion.
Doxorubicin +/- Olaratumab
Open-Label, Multicenter, Phase 1b/2 Trial

PFS Median 6.6 vs 4.1 months (N.S.)

OS Median 26.5 vs 14.7 months (p = 0.0003)

FDA and European Medicines Agency
Accelerated / Conditional Approvals in November 2016

Histology-Specific Management of Soft Tissue Sarcomas
Trabectedin Molecular Pharmacology

- Binds to DNA minor groove, bending the helix
- Interacts with transcription factors and other DNA binding proteins
- Major activity in myxoid/round cell liposarcoma with TLS/CHOP fusion oncoprotein (DNA binding protein)
Randomized Phase 3 Study of Trabectedin vs Dacarbazine:
Study Design and Status at Interim Analysis

Stratification:
- Prior lines chemotherapy (1 vs 2+)
- ECOG PS (0 vs 1)
- Sarcoma subtype (LPS vs LMS)

Key Criteria:
- Histologically proven LPS or LMS
- Previous therapy with an anthracycline containing regimen and ≥ 1 additional cytotoxic chemotherapy regimen
- Adequate bone marrow, renal and liver function

Randomization
2:1

Trabectedin 1.5 mg/m²
24h q3wks
(N=345*)

Dexamethasone 20 mg IV pre-medication

Dacarbazine 1g/m²
20-120 min q3wks
(N=173*)

N=518*

*Numbers reflect randomizations at time of Interim Analysis

Conducted at 85 sites in 4 different countries (94% of patients were enrolled at US sites)
Trabectedin vs. Dacarbazine in Leiomyosarcoma and Liposarcoma: Final Analysis of PFS (Investigator Assessed)

HR (95% CI) = 0.55 (0.436, 0.696)

p < 0.0001

PFS events: 329 (63.5% of 518 patients)

mPFS Trabectedin: 4.2 months
mPFS Dacarbazine: 1.5 months

HR (95% CI) = 0.55 (0.436, 0.696)

p < 0.0001
PFS Improved for both Leios and Lipos with Trabectedin

<table>
<thead>
<tr>
<th>Variable</th>
<th>Subgroup</th>
<th>HR 95% C.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Subjects</td>
<td>ALL</td>
<td>0.55 (0.44, 0.70)</td>
</tr>
<tr>
<td>Lines of prior chemotherapy</td>
<td>1</td>
<td>0.49 (0.23, 1.04)</td>
</tr>
<tr>
<td></td>
<td>>= 2</td>
<td>0.56 (0.43, 0.71)</td>
</tr>
<tr>
<td>ECOG</td>
<td>0</td>
<td>0.51 (0.36, 0.71)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.60 (0.43, 0.82)</td>
</tr>
<tr>
<td>Histological subtype</td>
<td>LEIOMYSARCOMA</td>
<td>0.55 (0.42, 0.73)</td>
</tr>
<tr>
<td></td>
<td>Nonuterine</td>
<td>0.58 (0.37, 0.92)</td>
</tr>
<tr>
<td></td>
<td>Uterine</td>
<td>0.58 (0.41, 0.81)</td>
</tr>
<tr>
<td></td>
<td>LIPOSARCOMA</td>
<td>0.55 (0.34, 0.87)</td>
</tr>
<tr>
<td></td>
<td>Decifferentiated</td>
<td>0.68 (0.37, 1.25)</td>
</tr>
<tr>
<td></td>
<td>Myxoid +/- round cell</td>
<td>0.41 (0.17, 0.98)</td>
</tr>
<tr>
<td></td>
<td>Pleomorphic</td>
<td>0.33 (0.07, 1.64)</td>
</tr>
<tr>
<td>Age</td>
<td>< 65</td>
<td>0.60 (0.46, 0.78)</td>
</tr>
<tr>
<td></td>
<td>>= 65</td>
<td>0.40 (0.24, 0.67)</td>
</tr>
<tr>
<td>Sex</td>
<td>Female</td>
<td>0.56 (0.43, 0.74)</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>0.53 (0.34, 0.82)</td>
</tr>
<tr>
<td>Race</td>
<td>White</td>
<td>0.52 (0.39, 0.68)</td>
</tr>
<tr>
<td></td>
<td>Non-White</td>
<td>0.65 (0.40, 1.03)</td>
</tr>
<tr>
<td>BMI</td>
<td>< 30</td>
<td>0.56 (0.41, 0.75)</td>
</tr>
<tr>
<td></td>
<td>>= 30</td>
<td>0.54 (0.37, 0.80)</td>
</tr>
</tbody>
</table>
Overall Survival: Final Analysis

- OS events: 381
- median OS Trabectedin: 13.7 months
- median OS Dacarbazine: 13.1 months

HR (95% CI) = 0.927 (0.748, 1.150)
p = 0.4920

No. Patients at Risk

<table>
<thead>
<tr>
<th></th>
<th>Dacarbazine</th>
<th>Trabectedin</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 months</td>
<td>193</td>
<td>384</td>
</tr>
<tr>
<td>24 months</td>
<td>149</td>
<td>341</td>
</tr>
<tr>
<td>36 months</td>
<td>119</td>
<td>287</td>
</tr>
<tr>
<td>45 months</td>
<td>95</td>
<td>242</td>
</tr>
<tr>
<td>54 months</td>
<td>89</td>
<td>207</td>
</tr>
<tr>
<td>63 months</td>
<td>64</td>
<td>153</td>
</tr>
<tr>
<td>72 months</td>
<td>49</td>
<td>111</td>
</tr>
<tr>
<td>81 months</td>
<td>33</td>
<td>61</td>
</tr>
<tr>
<td>90 months</td>
<td>24</td>
<td>35</td>
</tr>
<tr>
<td>99 months</td>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>108 months</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>117 months</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>126 months</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>135 months</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>144 months</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Sensitivity Analysis: Overall Survival
With Censoring at Post-Protocol Therapy

HR (95% CI) = 0.70 (0.47, 1.06)

p = 0.0927

No. Patients at Risk
Dacarbazine 193 90 38 13 8 4 3 1 0
Trabectedin 384 267 168 110 61 35 15 8 7 5 4 2 0
Trabectedin is FDA approved only for leiomyosarcomas and liposarcomas after prior doxorubicin-based chemotherapy.
Eribulin vs. Dacarbazine Phase 3 Study design and objectives

Select eligibility criteria
- LMS or ADI of high or intermediate grade
- ≥2 prior regimens for advanced disease
- Measurable disease (RECIST 1.1)

Randomize 1:1

Eribulin
1.4 mg/m² IV
Days 1 and 8 every 21 days
n=228

Dacarbazine*
850, 1000, or 1200 mg/m² IV
Day 1 every 21 days
n=224

Primary endpoint
- OS

Selected Secondary endpoints
- Progression-free survival (PFS)
- Progression-free rate at 12 weeks (PFR_{12wks})
- Safety and tolerability (AE assessment based on CTCAE v4.02)

Selected exploratory endpoints
- Objective response rate (ORR; CR or PR)
- Health-related quality of life

*Starting dose selected by the local investigator at study initiation;
†PFR_{12wks}, proportion of patients who were still alive without disease progression at 12 weeks from randomization.

No Difference in Secondary Endpoint: PFS

<table>
<thead>
<tr>
<th></th>
<th>Eribulin</th>
<th>Dacarbazine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median (months)</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td>0.877 (0.710, 1.085)</td>
<td>0.2287</td>
</tr>
</tbody>
</table>

Patients at Risk:

- **Eribulin**: 228 79 41 27 16 9 5 2 1 0
- **Dacarbazine**: 224 63 27 14 6 4 2 1 1 0
Primary endpoint: OS

- Primary endpoint of OS was met, indicating a 2-month improvement in median OS with eribulin

<table>
<thead>
<tr>
<th></th>
<th>Eribulin</th>
<th>Dacarbazine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median (months)</td>
<td>13.5</td>
<td>11.5</td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td>0.768 (0.618, 0.954)</td>
<td></td>
</tr>
<tr>
<td>Stratified P-value</td>
<td>0.0169</td>
<td></td>
</tr>
</tbody>
</table>

Preplanned OS subgroups analysis

<table>
<thead>
<tr>
<th>Group/Subgroup</th>
<th>— Events/n —</th>
<th>HR (95% CI)</th>
<th>Median (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIPOSARCOMA</td>
<td>Eribulin: 52/71, Dacarb: 63/72</td>
<td>0.511 (0.346, 0.753)</td>
<td>15.6</td>
</tr>
<tr>
<td>LEIOMYOSARCOMA</td>
<td>Eribulin: 124/15, Dacarb: 118/15</td>
<td>0.927 (0.714, 1.203)</td>
<td>12.7</td>
</tr>
</tbody>
</table>

Favors eribulin

Progression-free survival in Liposarcoma Pts

- PFS was improved with eribulin compared with dacarbazine (2.9 vs 1.7; HR: 0.521 [95% CI: 0.346–0.784]; nominal \(p = 0.0015 \)).
Overall survival in Liposarcoma Patients

- OS was longer with eribulin treatment compared with dacarbazine (15.6 vs 8.4 months; HR: 0.511; 95% CI: 0.346–0.753; nominal $p = 0.0006$).

OS MEDIAN

15.6 vs. 8.4 months
Eribulin: Histology-specific FDA approval

Eribulin is FDA approved only for liposarcomas after prior doxorubicin-based chemotherapy
Phase III Study Design in chemo-refractory STS
PAZOPANIB vs. PLACEBO

Primary Endpoint
PFS by Independent Review

Secondary Endpoints
• Overall Survival
• Overall Response Rate
• Quality of Life
• Safety

N= 369

Soft Tissue Sarcomas (Excluding LIPOSARCOMA and GIST) after chemo failure
Stratification Factors:
• Performance status
• # of Prior lines of systemic therapy for advanced disease

• NO cross-over of patients on placebo to pazopanib
Pazopanib Significantly Improves Progression-Free Survival in Metastatic Soft Tissue Sarcoma progressing after standard chemotherapy

<table>
<thead>
<tr>
<th></th>
<th>Median PFS (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pazopanib</td>
<td>4.60 months (4.12-4.90)</td>
</tr>
<tr>
<td>Placebo</td>
<td>1.61 months (1.01-1.86)</td>
</tr>
<tr>
<td>HR</td>
<td>0.35 (0.26-0.48)</td>
</tr>
<tr>
<td>p-value</td>
<td>≤ 0.001</td>
</tr>
</tbody>
</table>

No Significant Impact of Pazopanib on Overall Survival in Metastatic Soft Tissue Sarcoma progressing after standard chemotherapy

Median OS (95% CI)
12.6 months (10.9-14.9)
10.7 months (9.0-13.1)
HR=0.87 (95.57% CI: 0.67-1.13)
p-value=0.256

Other New Molecular Targeted Approaches for Therapy of Metastatic Soft Tissue Sarcomas
INI1 Loss Creates an Oncogenic Dependency on EZH2 in Tumors

Stem or Progenitor Cells

Highly dependent on EZH2 activity

- SWI/SNF
- INI1
- SMARCA4
- PRC2
- EZH2

INI1-negative tumors, e.g.:
- Malignant rhabdoid tumor (MRT)
- Epithelioid sarcoma

EZH2 knockout reverses oncogenesis induced by INI1 loss

- Hyper-repression of PRC2 targets
- Potentiation of stem cell programs
- Oncogenic Transformation

Adapted from Wilson 2010

Italiano A et al. ECC presentation, Vienna Sept 2015
CR in Patient with INI1-Negative Malignant Rhabdoid Tumor

Baseline

Week 4

Week 8: CR

Week 20

55 y.o. male
800 mg BID

INI1 IHC

Diagnosis: Surgery + XRT

Tazemetostat: ongoing response week 65+

2013 CR

2014 PD

2015 Week 8: CR

Week 20: pathologic CR
NY-ESO-1: A Target Antigen in Synovial Sarcoma

- **NY-ESO-1 is a Cancer-Testis Antigen** identified by Chen et al (1997)
- **Highly Expressed in synovial sarcomas**
 - 76% of synovial sarcomas express strong staining
- **A T cell receptor (TCR)** recognizing **NY-ESO-1** in the context of **HLA:A0201** was cloned from a patient with cancer, then modified for higher affinity

 Zhao, J Immunol, 2007

Modified from slide courtesy of Crystal McKall, NCI (now Stanford)
Efficacy of Genetically Engineered Autologous T-cells with TCR Targeting NY-ESO1: 60% Response Rate

Modified from slide courtesy of Crystal McKall, NCI (now Stanford)
• There are recent therapeutic advances for patients with sarcomas
• First monoclonal antibody, Olaratumab, with doxorubicin may improve survival, but needs phase III data to confirm
• Other agents have evidence of benefit
• New drugs for TKI-resistant GIST subsets in development
• Translational research works to improve the outcomes of patients with defined sarcoma subsets
Thank you for your attention